En analyse mathématique, la règle du produit, aussi appelée règle de Leibniz, est une formule utilisée afin de trouver les dérivées de produits de fonctions. Sous sa forme la plus simple, elle s'énonce ainsi : En notation de Leibniz, cette formule s'écrit : Une application importante de la règle du produit est la méthode d'intégration par parties. Soit la fonction définie par : Pour trouver sa dérivée avec la règle du produit, on pose et . Les fonctions , et sont partout dérivables car polynomiales.
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let , where both f and g are differentiable and The quotient rule states that the derivative of h(x) is It is provable in many ways by using other derivative rules. Given , let , then using the quotient rule: The quotient rule can be used to find the derivative of as follows: Reciprocal rule The reciprocal rule is a special case of the quotient rule in which the numerator .
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
En mathématiques, dans le domaine de l'analyse, le théorème de dérivation des fonctions composées (parfois appelé règle de dérivation en chaîne ou règle de la chaîne, selon l'appellation anglaise) est une formule explicitant la dérivée d'une fonction composée pour deux fonctions dérivables. Elle permet de connaître la j-ème dérivée partielle de la i-ème application partielle de la composée de deux fonctions de plusieurs variables chacune.
En théorie des probabilités et en statistique, la covariance entre deux variables aléatoires est un nombre permettant de quantifier leurs écarts conjoints par rapport à leurs espérances respectives. Elle s’utilise également pour deux séries de données numériques (écarts par rapport aux moyennes). La covariance de deux variables aléatoires indépendantes est nulle, bien que la réciproque ne soit pas toujours vraie. La covariance est une extension de la notion de variance.