Explore le bruit d'échappement dans la neuroscience computationnelle, couvrant l'intensité stochastique, les intervalles d'intercirculation, les fonctions de vraisemblance, la comparaison des modèles de bruit, et les codes de vitesse par rapport aux codes temporels.
Se penche sur la simulation de la dynamique du réseau dans les neurosciences silico, couvrant l'activité spontanée et évoquée, les simulations in-vitro et in-vivo, et l'analyse de sensibilité.
Explore la modélisation détaillée des canaux ioniques et des morphologies neuronales dans les neurosciences silico, couvrant la classification des neurones, la cinétique des canaux ioniques et les observations expérimentales.