Couvre les fonctions, la différenciation, les extensions Taylor et les intégrales, fournissant des concepts fondamentaux et des applications pratiques.
Couvre les dérivés Wirtinger dans des variables complexes, en discutant de leur définition, application, et propriétés en tant que variables indépendantes.
Discute de la série Laurent et du théorème des résidus dans l'analyse complexe, en se concentrant sur les singularités et leurs applications dans l'évaluation des intégrales complexes.