Couvre la régression linéaire, la régularisation, les problèmes inverses, la tomographie par rayons X, la reconstruction d'images, l'inférence de données et l'intensité du détecteur.
Couvre les bases de la régression linéaire et la façon de résoudre les problèmes d'estimation en utilisant les moindres carrés et la notation matricielle.
Couvre la régression polynôme, la descente en gradient, le surajustement, le sous-ajustement, la régularisation et la mise à l'échelle des caractéristiques dans les algorithmes d'optimisation.
Explore les méthodes du noyau dans l'apprentissage automatique, en mettant l'accent sur leur application dans les tâches de régression et la prévention du surajustement.
Explore l'explication géométrique des raisons pour lesquelles les solutions Lasso sont rares et comment les coefficients changent avec le paramètre de régularisation.
Explore les principes fondamentaux de la régression linéaire, en soulignant limportance des techniques de régularisation pour améliorer la performance du modèle.