Couvre les diagnostics de régression pour les modèles linéaires, en soulignant limportance de vérifier les hypothèses et didentifier les valeurs aberrantes et les observations influentes.
Explore les modèles linéaires, les surajustements et l'importance de l'expansion des fonctionnalités et ajoute plus de données pour réduire les surajustements.
Explore la diagonalisation des matrices symétriques à l'aide de vecteurs propres et de valeurs propres, en mettant l'accent sur l'orthogonalité et les valeurs propres réelles.