Explore les modèles linéaires, les surajustements et l'importance de l'expansion des fonctionnalités et ajoute plus de données pour réduire les surajustements.
Explore la régression linéaire avec et sans covariables, couvrant des modèles capturés par des distributions indépendantes et des outils comme des sous-espaces et des projections orthogonales.
Explore la sélection de modèles imbriqués dans des modèles linéaires, en comparant les modèles à travers des sommes de carrés et ANOVA, avec des exemples pratiques.
Introduit une analyse de régression, couvrant les modèles linéaires et non linéaires, la régression de Poisson et l'analyse du temps de défaillance à l'aide de divers ensembles de données.
Couvre les modèles linéaires, la régression logistique, les limites de décision, k-NN, et les applications pratiques dans l'attribution des auteurs et l'analyse des données d'image.