Couvre la vectorisation, les fonctions et le contrôle de flux dans Matlab, en soulignant l'importance d'éviter les variables globales et en fournissant des exemples de graphiques simples et de techniques de débogage.
Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.
Explore les signaux de débruitage avec des modèles de mélange gaussien et l'algorithme EM, l'analyse de signal EMG et la segmentation d'image à l'aide de modèles markoviens.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Couvre l'intégration de Lebesgue des fonctions simples et l'approximation des fonctions non négatives par le bas en utilisant des fonctions constantes par morceaux.