Couvre la vectorisation en Python en utilisant Numpy pour un calcul scientifique efficace, en soulignant les avantages d'éviter les boucles et de démontrer des applications pratiques.
Discute des méthodes numériques, en se concentrant sur les critères d'arrêt, SciPy pour l'optimisation et la visualisation des données avec Matplotlib.
Couvre des méthodes de descente de gradient plus rapides et une descente de gradient projetée pour une optimisation contrainte dans l'apprentissage automatique.