S'insère dans la forme et la fonction de systèmes complexes, en mettant l'accent sur l'interaction entre «masse» et «réseaux de transport» dans différents systèmes.
Introduit des méthodes de pointe dans l'optimisation et la simulation, couvrant des sujets tels que l'analyse statistique, la réduction de la variance et les projets de simulation.
Couvre l'informatique scientifique, l'automatisation des processus et la gestion des données dans les applications informatiques dans différents secteurs.
Couvre la simulation, la modélisation, les profils d'accélération, les fréquences naturelles, les calculs de rigidité et les solutions anti-résonance pour les robots multi-axes.
Couvre l'activité spontanée du réseau cérébral, la simulation neuronale et la validation, soulignant l'importance des conditions in-vitro et in-vivo pour une modélisation précise du réseau.
Explore les robots d'entraînement en renforçant l'apprentissage et l'apprentissage de la démonstration, mettant en évidence les défis de l'interaction homme-robot et de la collecte de données.