S'engage dans l'apprentissage continu des modèles de représentation après déploiement, soulignant les limites des réseaux neuronaux artificiels actuels.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Couvre l'utilisation de transformateurs en robotique, en se concentrant sur la perception incarnée et les applications innovantes dans la locomotion humanoïde et l'apprentissage du renforcement.
Explore la logique de la fonction neuronale, le modèle Perceptron, les applications d'apprentissage profond et les niveaux d'abstraction dans les modèles neuronaux.
Explore les robots volants interactifs et respectueux de l'environnement, couvrant la prévision du vent, le vol autonome, les stratégies de contrôle, les défis auxquels sont confrontés les drones omnidirectionnels et les technologies de pointe.