Couvre l'apprentissage supervisé, la classification, la régression, les limites de décision, le surajustement, Perceptron, SVM et la régression logistique.
Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Introduit des méthodes de noyau telles que SVM et régression, couvrant des concepts tels que la marge, la machine vectorielle de support, la malédiction de la dimensionnalité et la régression de processus gaussien.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.