Couvre les bases de l'optimisation, y compris les perspectives historiques, les formulations mathématiques et les applications pratiques dans les problèmes de prise de décision.
Explore l'optimisation dans la modélisation des systèmes énergétiques, couvrant les variables de décision, les fonctions objectives et les différentes stratégies avec leurs avantages et leurs inconvénients.
Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.