Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'analyse de la variance, de la construction du modèle, de la sélection des variables et de l'estimation des fonctions dans les méthodes de régression.
Couvre la régularisation dans les problèmes les moins carrés, favorisant des solutions optimales tout en s'attaquant à des défis comme la non-unité, le mauvais conditionnement et le sur-ajustement.
Couvre les problèmes de surajustement, de sélection de modèle, de validation, de validation croisée, de régularisation, de régression du noyau et de représentation des données.
Discute du surajustement, de la sélection des modèles, de la validation croisée, de la régularisation, des représentations de données et de la gestion des données déséquilibrées dans l'apprentissage automatique.
Explore la théorie de la décomposition de la valeur singulière, les solutions de systèmes linéaires, les moindres carrés et les concepts d'ajustement des données.
Compare L1 et L0 pénalisation en régression linéaire avec des conceptions orthogonales en utilisant des algorithmes gourmands et des comparaisons empiriques.
Couvre la divergence Kullback-Leibler, la régularisation et les statistiques bayésiennes pour lutter contre le surajustement dans les modèles d'apprentissage automatique.