Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'hypothèse de thermalisation d'état propre dans les systèmes quantiques, en mettant l'accent sur la théorie de la matrice aléatoire et le comportement des observables dans l'équilibre thermique.
Introduit des modèles de Markov cachés, expliquant les problèmes de base et les algorithmes comme Forward-Backward, Viterbi et Baum-Welch, en mettant laccent sur lattente-Maximisation.
Couvre la probabilité appliquée, les chaînes de Markov et les processus stochastiques, y compris les matrices de transition, les valeurs propres et les classes de communication.
Couvre les concepts fondamentaux des probabilités et des statistiques, y compris les distributions, les propriétés et les attentes des variables aléatoires.
Explore les signaux de débruitage avec des modèles de mélange gaussien et l'algorithme EM, l'analyse de signal EMG et la segmentation d'image à l'aide de modèles markoviens.
Plonge dans les chaînes de Markov en analysant un scénario avec deux puces se déplaçant dans des directions opposées, explorant les matrices de transition et les probabilités au fil du temps.
Explore le concept de distribution stationnaire dans les chaînes de Markov, en discutant de ses propriétés et de ses implications, ainsi que des conditions d'une récurrence positive.