Probabilités avancées : Variables aléatoires et valeurs attendues
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les distributions communes, les fonctions génératrices de temps et les matrices de covariance dans les statistiques pour la science des données.
Explore la loi 0-1 de Kolmogorov, présentant des cas de convergence et de divergence dans des variables aléatoires basées sur la finitude des attentes.
Couvre les copules, le théorème de Sklar, les méta distributions et diverses mesures de dépendance comme les corrélations de rang et les coefficients de dépendance de la queue.
Couvre les inégalités de concentration et les méthodes d'échantillonnage pour estimer les distributions inconnues, en mettant l'accent sur les taux d'infection de la population.