Explore les modèles de jouets, les sigma-algèbres, les variables aléatoires à valeur T, les mesures et l'indépendance dans la théorie des probabilités.
Introduit le cours sur la mesure et l'intégration, en se concentrant sur le développement d'une nouvelle théorie pour surmonter les limites de l'intégrale de Riemann.
Explore l'intégrale de Lebesgue, où fonctionne les partitions auto-sélectionnées, conduisant à des ensembles mesurables et des complexités non mesurables.
Explore les ensembles dénombrables et innombrables, l'ensemble Cantor, l'ensemble Mandelbrot et la dimension Box dans la dynamique non linéaire et les systèmes complexes.
Couvre les bases des mesures de probabilité, des propriétés, des exemples, de la mesure de Lebesgue et de la terminologie liée aux espaces et aux événements de probabilité.