Couvre les théorèmes d'extension dans les espaces de Sobolev et l'inégalité de Poincaré, en soulignant l'importance de la compréhension de ces concepts dans les équations aux dérivées partielles.
Couvre les équations différentielles partielles, les Hessiens, et le Théorème de la fonction implicite, avec un accent sur la résolution des questions d'examen.
Couvre les propriétés des solutions fondamentales et introduit la formule de représentation de Green pour résoudre les équations aux dérivées partielles.
Couvre les méthodes numériques pour résoudre les problèmes de valeur limite, y compris les applications avec la transformée de Fourier rapide (FFT) et les données de débruitage.