Explore les concepts avancés dans les modèles de régression linéaire, y compris la multicolinéarité, les tests d'hypothèses et les valeurs aberrantes de manipulation.
Explore comment les variables instrumentales corrigent les biais à partir des erreurs de mesure et de la causalité inverse dans les modèles de régression.
Introduit les bases de l'apprentissage supervisé, en mettant l'accent sur la régression logistique, la classification linéaire et la maximisation de la probabilité.
Explore les fondamentaux de la régression linéaire, la formation des modèles, l'évaluation et les mesures du rendement, en soulignant l'importance de la R2, du MSE et de l'EAM.
Introduit des modèles linéaires dans l'apprentissage automatique, couvrant les bases, les modèles paramétriques, la régression multi-sorties et les mesures d'évaluation.
Explore le surajustement, la validation croisée et la régularisation dans l'apprentissage automatique, en mettant l'accent sur la complexité du modèle et l'importance de la force de régularisation.