Image Processing II: Propriétés et applications du KLT
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Déplacez-vous dans le biais spectral des réseaux neuronaux polynômes, analysez l'impact sur l'apprentissage des différentes fréquences et discutez des résultats expérimentaux.
Explore la transformée de Fourier, le filtrage de fréquence, la segmentation et l'estimation de la taille des particules à l'aide de techniques d'analyse d'images.
Introduit les bases du traitement d'image, des opérateurs de point et d'espace, du traitement d'histogramme et des opérations de domaine de transformation.
Explore les principes de compression d'images, en se concentrant sur JPEG 2000, couvrant le codage basé sur la transformation, la quantification, le codage entropie, la région d'intérêt, la résilience aux erreurs et les implémentations logicielles.