Introduit les bases des équations différentielles ordinaires, explorant l'existence, l'unicité, les dimensions supérieures, les fonctions de Lipschitz et la recherche de solutions.
Couvre la définition et la solution des équations Cauchy-Euler, qui sont des équations différentielles de second ordre avec une forme et des solutions spécifiques.
Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles, en se concentrant sur l'erreur de troncature locale, la stabilité et la continuité de Lipschitz.