Explore les solutions de réseau neuronal profond pour l'équation électronique Schrödinger et leur efficacité de calcul dans la physique de nombreux corps.
Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Explore la convergence des réseaux neuronaux à travers l'adaptation des paramètres et l'alternance des regrets, en mettant l'accent sur l'événement NeurIPS 2023 à l'EPFL.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.
Résume les cartes de Kohonen, qui couvrent l'initialisation, l'échantillonnage, l'appariement des similarités, des exemples et des applications dans l'apprentissage automatique et la classification des données.
Explore les fondamentaux de l'apprentissage profond, y compris la classification de l'image, les principes de travail du réseau neuronal et les défis de l'apprentissage automatique.
Couvre les principes fondamentaux de l'apprentissage profond, y compris les données, l'architecture et les considérations éthiques dans le déploiement de modèles.