S'engage dans l'apprentissage continu des modèles de représentation après déploiement, soulignant les limites des réseaux neuronaux artificiels actuels.
Couvre les faits stylisés du rendement des actifs, des statistiques sommaires, des tests de la normalité, des placettes Q-Q et des hypothèses de marché efficaces.
Explore la méthode de fonction aléatoire pour résoudre les PDE à l'aide d'algorithmes d'apprentissage automatique pour approximer efficacement les fonctions à haute dimension.
Explore l'apprentissage automatique à travers des modèles solvables, couvrant la complexité des échantillons, les réseaux neuronaux et les lacunes de calcul.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Déplacez-vous dans les potentiels interatomiques de la machine appris, montrant leur précision et leur rentabilité dans la prédiction des propriétés chimiques.
Couvre une analyse SWOT de l'apprentissage automatique et de l'intelligence artificielle, explorant les forces, les faiblesses, les possibilités et les menaces sur le terrain.