Examine les éléments fondamentaux de la gestion des données, y compris les modèles, les sources et les querelles, en soulignant l'importance de comprendre et de résoudre les problèmes de données.
Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Se penche sur la science des données dans la santé personnalisée et mondiale, en mettant l'accent sur les technologies améliorant la confidentialité et les applications de l'IA dans les soins de santé.
Discute des techniques avancées d'optimisation Spark pour gérer efficacement les Big Data, en se concentrant sur la parallélisation, les opérations de mélange et la gestion de la mémoire.
Présente une démo sur la virtualisation adaptative des données dans SmartDataLake, mettant l'accent sur l'assemblage de profils d'entreprise et l'exécution de requêtes de joint à travers les ensembles de données.