Explique le regroupement des moyennes k, en attribuant des points de données à des grappes en fonction de la proximité et en minimisant les distances carrées à l'intérieur des grappes.
Couvre les méthodes de calcul se concentrant sur les chemins et les chaînes de caractères, y compris des exemples de concaténation, d'éléments régex et d'opérations de chaînes de caractères.
Introduit des bases d'apprentissage automatique, couvrant la segmentation des données, le regroupement, la classification, et des applications pratiques comme la classification d'image et la similarité du visage.
Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Couvre les paradigmes algorithmiques pour les problèmes de graphique dynamique, y compris la connectivité dynamique, la décomposition de l'expansion et le regroupement local, brisant les barrières dans les problèmes de connectivité k-vertex.
Explore les techniques de regroupement de comportement et de réduction de dimensionnalité non supervisées, couvrant des algorithmes comme K-Means, DBSCAN et Gaussian Mixture Model.
Explore Kernel K- signifie regroupement, interprétation des solutions, traitement des données manquantes, et sélection des ensembles de données pour l'apprentissage automatique.