Perceptron multicouche : formation et optimisation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Plongez dans les défis et les avantages de l'apprentissage profond, en soulignant la transition vers les réseaux neuronaux convolutifs et l'impact de la largeur du réseau sur le paysage des pertes.
Explore le compromis entre la complexité et le risque dans les modèles d'apprentissage automatique, les avantages de la surparamétrisation et le biais implicite des algorithmes d'optimisation.
Explore l'évolution des CNN dans le traitement de l'image, couvrant les réseaux neuronaux classiques et profonds, les algorithmes d'entraînement, la rétropropagation, les étapes non linéaires, les fonctions de perte et les frameworks logiciels.
Explore la recherche approfondie des connaissances et son application pour prédire les résultats d'apprentissage des élèves à l'aide de réseaux neuronaux et de fonctions de perte.
Explore l'optimisation non convexe dans l'apprentissage profond, couvrant les points critiques, la convergence SGD, les points de selle et les méthodes de gradient adaptatif.
Couvre la dérivation de la formule de descente de gradient stochastique pour un perceptron simple et explore l'interprétation géométrique de la classification.