Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.
Couvre les critères d'estimation des paramètres, en soulignant l'importance de la cohérence, du biais, de la variance et de l'efficacité des estimateurs.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Couvre les intervalles de confiance pour les moyennes gaussiennes, la distribution des élèves et les intervalles de confiance de Wald pour les estimateurs de probabilité maximale.