Introduit la complexité computationnelle, les problèmes de décision, la complexité quantique et les algorithmes probabilistes, y compris les problèmes dures au NP et les problèmes complets au NP.
Explore la division du travail dans les systèmes naturels, la coordination multi-robots, et les défis de l'incertitude dans les algorithmes basés sur le marché.
Couvre les mécanismes d'attention subquadratiques et les modèles d'espace d'état, en se concentrant sur leurs fondements théoriques et leurs implémentations pratiques dans l'apprentissage automatique.