Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur les défis que pose l'équité dans les processus décisionnels algorithmiques, la lutte contre les préjugés et les injustices historiques dans les données.
Plonge dans la dynamique des réseaux sociaux et d'information, y compris le comportement de troupeau, les cascades d'informations, l'attachement préférentiel et le paradoxe de l'amitié.
Examine les défis que posent les hypothèses de données, les biais et d'autres aspects de la recherche, y compris les écritures incomplètes et les frustrations des nouveaux arrivants.
Discute des implications éthiques des systèmes NLP, en mettant l'accent sur les biais, la toxicité et les préoccupations en matière de protection de la vie privée dans les modèles linguistiques.
Introduit le cours pratique AI et FX, en se concentrant sur des lectures hebdomadaires et des discussions sur les aspects éthiques et juridiques de l'IA.
Explore la qualité des données, les biais dans les données et l'importance des bonnes pratiques de gouvernance dans les environnements de données urbains.