Deep Learning : représentation de données et perception multicouche
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Explore la formation, l'optimisation et les considérations environnementales des réseaux neuronaux, avec des informations sur les clusters PCA et K-means.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.
Couvre les bases de l'apprentissage profond, y compris les représentations de données, le sac de mots, le prétraitement des données, les réseaux de neurones artificiels et les réseaux de neurones convolutifs.
Introduit des réseaux de flux, couvrant la structure du réseau neuronal, la formation, les fonctions d'activation et l'optimisation, avec des applications en prévision et finance.
Introduit des réseaux neuronaux, des fonctions d'activation et de rétropropagation pour la formation, en répondant aux défis et aux méthodes puissantes.
Couvre les techniques de gestion des données manquantes et de normalisation des fonctionnalités, ainsi que la transformation des données d'entrée et de sortie.
Couvre la représentation des données à l'aide de PCA pour la réduction de la dimensionnalité, en se concentrant sur la préservation du signal et l'élimination du bruit.
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.