Introduit des concepts d'apprentissage profond pour les NLP, couvrant l'intégration de mots, les RNN et les Transformateurs, mettant l'accent sur l'auto-attention et l'attention multi-têtes.
Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.
Fournit un aperçu du traitement du langage naturel, en se concentrant sur les transformateurs, la tokenisation et les mécanismes d'auto-attention pour une analyse et une synthèse efficaces du langage.
En savoir plus sur l'apprentissage profond pour le traitement des langues naturelles, l'exploration de l'intégration des mots neuraux, des réseaux neuraux récurrents et de la modélisation des neurones avec les transformateurs.
Introduit des intégrations de mots, expliquant comment ils capturent les significations des mots en fonction du contexte et de leurs applications dans les tâches de traitement du langage naturel.
Explore l'apprentissage profond pour la PNL, en couvrant les insertions de mots, les représentations contextuelles, les techniques d'apprentissage et les défis tels que les gradients de disparition et les considérations éthiques.
Explore la recherche de documents, la classification, l'analyse des sentiments, les matrices TF-IDF, les méthodes de voisinage les plus proches, la factorisation matricielle, la régularisation, LDA, les vecteurs de mots contextualisés et BERT.