Explore la compression des données par la définition, les types et les exemples pratiques d'entropie, illustrant son rôle dans le stockage et la transmission efficaces de l'information.
Explore la compression sans perte à l'aide d'algorithmes Shannon-Fano et Huffman, montrant l'efficacité et la vitesse supérieures de Huffman sur Shannon-Fano.
Explore les principes de compression d'images, en se concentrant sur JPEG 2000, couvrant le codage basé sur la transformation, la quantification, le codage entropie, la région d'intérêt, la résilience aux erreurs et les implémentations logicielles.