Explore le modèle Hodgkin-Huxley, les phases de potentiel d'action, la dynamique ionique, la théorie des câbles et la modélisation compartimentale dans l'excitabilité neuronale.
Se concentre sur l'assemblage des éléments constitutifs du réseau neuronal et sur la gestion de la rareté des données à l'aide de diverses stratégies et hypothèses.
Explore la modélisation détaillée des canaux ioniques et des morphologies neuronales dans les neurosciences silico, couvrant la classification des neurones, la cinétique des canaux ioniques et les observations expérimentales.
Explore la classification et les comportements électriques des interneurons GABAergiques dans le cortex cérébral, soulignant l'importance d'une terminologie cohérente et de la compréhension de la diversité des canaux ioniques.
Explore le regroupement dans les réseaux de neurosciences silico, la définition de l'espace et le traitement des données rares pour reconstruire les régions du cerveau.
Couvre l'activité spontanée du réseau cérébral, la simulation neuronale et la validation, soulignant l'importance des conditions in-vitro et in-vivo pour une modélisation précise du réseau.
Souligne la reproductibilité et la réutilisabilité des données dans les neurosciences silico, en mettant l'accent sur les outils et les méthodes de neuroinformatique.