Couvre les concepts fondamentaux de l'apprentissage automatique, y compris la classification, les algorithmes, l'optimisation, l'apprentissage supervisé, l'apprentissage par renforcement et diverses tâches telles que la reconnaissance d'images et la génération de texte.
Explore l'apprentissage autosupervisé pour les véhicules autonomes, en dérivant des étiquettes de données elles-mêmes et en discutant de ses applications et de ses défis.
Explore les principes fondamentaux de la recherche scientifique, de l'impact des ordinateurs, des algorithmes numériques et de l'apprentissage profond dans la résolution de problèmes de haute dimension.
Couvre l'impact des transformateurs dans la vision par ordinateur, en discutant de leur architecture, de leurs applications et de leurs progrès dans diverses tâches.
Explore les modèles prédictifs et les traceurs pour les véhicules autonomes, couvrant la détection d'objets, les défis de suivi, le suivi en réseau neuronal et la localisation des piétons en 3D.
S'engage dans l'apprentissage continu des modèles de représentation après déploiement, soulignant les limites des réseaux neuronaux artificiels actuels.