Démontre l'équivalence entre l'homologie simpliciale et singulière, prouvant les isomorphismes pour les complexes s finis et discutant de longues séquences exactes.
Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
Explore la naturalité dans les complexes de chaînes, les groupes d'homologie et les groupes abéliens, en mettant l'accent sur la commutativité des carrés et du Cinq-Lemme.
Se penche sur les théorèmes des coefficients universels en algèbre homologique, montrant leur application pratique dans le calcul des groupes d'homologie et de cohomologie.
Couvre les premières propriétés de l'homologie singulière et la préservation des composants de décomposition et de chemin connectés dans les espaces topologiques.