Couvre les méthodes de recherche de racines, en se concentrant sur les techniques de bisection et de sécante, leurs implémentations et les comparaisons de leurs taux de convergence.
Introduit la recherche de racines en utilisant la méthode de la bisection pour les équations non linéaires, illustrée par un exemple de système à trois réservoirs.
Couvre la méthode de bisection pour approximer les zéros de fonctions, en discutant des avantages, des inconvénients et d'une approche alternative pour une convergence plus rapide.
Couvre la méthode de bisection et la méthode Newton pour résoudre les équations non linéaires à l'aide de lignes tangentes et de fractionnement d'intervalles.
Couvre les algorithmes pour résoudre des problèmes mathématiques à l'aide d'un ordinateur, y compris les équations non linéaires et les méthodes d'approximation numérique.
Discute de la série Taylor et de la méthode sécante, en se concentrant sur leurs applications dans les techniques d'analyse numérique et de recherche de racines.