Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Séance de cours
Applications linéaires des espaces vectoriaux
Graph Chatbot
Séances de cours associées (25)
Précédent
Page 2 sur 3
Suivant
Espaces vectoriels: propriétés et exemples
Couvre la définition et les propriétés des espaces vectoriels, ainsi que des exemples tels que les espaces euclidien et les espaces matriciels.
Indépendance linéaire et bases
Couvre l'indépendance linéaire, les bases et les systèmes de coordination avec des exemples et des théorèmes.
Espaces vectoriaux : définitions et exemples
Couvre les espaces vectoriels, les sous-espaces, l'indépendance linéaire et les travées dans les espaces à dimensions finies.
Indépendance linéaire et bases dans les espaces vectoriaux
Explique l'indépendance linéaire, les bases et la dimension dans les espaces vectoriels, y compris l'importance de l'ordre des vecteurs dans une base.
Sous-espaces vectoriaux
Explore la définition et les propriétés des sous-espaces vectoriels dans l'algèbre linéaire.
Espaces vectoriels: opérations et transformations linéaires
Explore les opérations d'espace vectoriel, les transformations linéaires, la représentation matricielle et les applications linéaires.
Espaces vectoriels: bases et opérations
Couvre les bases des espaces vectoriels, y compris l'addition, la multiplication scalaire et les vecteurs zéro, avec des exemples et des applications.
Espaces vectoriaux : définitions et exemples
Couvre la définition et les exemples d'espaces vectoriels, y compris les sous-espaces et les transformations linéaires.
Combinaisons linéaires et espaces vectoriels
Introduit des combinaisons linéaires dans les espaces vectoriels, les opérations et les polynômes de degré 2.
Généralisation de la modification des matrices de base
Couvre les bases linéaires de l'algèbre, y compris les matrices, le changement de base et les matrices inversées.