Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Explore les modèles de calcul du système visuel ventral, en se concentrant sur l'optimisation des réseaux pour les tâches réelles et la comparaison avec les données cérébrales.
Explore la recherche sur la vision, la régénération du nerf optique et les modèles bioréalistes dans le cortex visuel de la souris, en mettant l'accent sur la stimulation du nerf optique et l'apprentissage visuel.
Explore les champs réceptifs, les zones cérébrales visuelles, les différences induites par l'évolution des voies visuelles et les mécanismes neuraux sous-jacents au comportement d'évasion.
Couvre la fonction neuronale, les modèles hiérarchiques, les comportements des taxis odorants et les paramètres de circuit disparates dans 18 diapositives.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Explore la logique de la fonction neuronale, le modèle Perceptron, les applications d'apprentissage profond et les niveaux d'abstraction dans les modèles neuronaux.