Explorer des modèles linéaires généralisés pour les données non gaussiennes, couvrant l'interprétation de la fonction de liaison naturelle, la normalité asymptotique MLE, les mesures de déviance, les résidus et la régression logistique.
Fournit un aperçu des modèles linéaires généralisés, en mettant l'accent sur les modèles de régression logistique et de Poisson, et leur mise en oeuvre dans R.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Explore des exemples spéciaux de modèles linéaires généralisés, couvrant la régression logistique, les modèles de données de comptage, les problèmes de séparation et les relations non paramétriques.