Mécanismes neuronaux de la cartographie d'orientation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les signaux neuraux, le traitement EMG, les synergies musculaires et le contrôle de la prothèse à l'aide de techniques avancées de traitement des signaux.
Se penche sur la simulation de la dynamique du réseau dans les neurosciences silico, couvrant l'activité spontanée et évoquée, les simulations in-vitro et in-vivo, et l'analyse de sensibilité.
Explore le traitement du signal neuronal, les techniques d'IRM et la validation de l'imagerie, en mettant l'accent sur la connectivité structurelle et fonctionnelle et les applications cliniques.
Explore l'optogénétique, la chimiogénétique et la sonogénétique pour concevoir l'activité neuronale à l'aide de la lumière, des produits chimiques et du son.
Couvre l'activité spontanée du réseau cérébral, la simulation neuronale et la validation, soulignant l'importance des conditions in-vitro et in-vivo pour une modélisation précise du réseau.
Explore le contrôle du comportement chez les animaux et les robots, couvrant les perspectives historiques, l'activation des neurones, le modèle de Drosophila, les techniques avancées et l'organisation de mini-projets.
Discute de l'assemblage des réseaux neuraux en définissant l'espace et en la populant avec des neurones, en mettant l'accent sur les défis et les stratégies pour des morphologies précises et de l'information sur le volume.
Explore des modèles d'apprentissage automatique pour les neurosciences, en se concentrant sur la compréhension des fonctions cérébrales et la reconnaissance des objets centraux par le biais de réseaux neuronaux convolutifs.