Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.
Explore l'apprentissage autosupervisé pour les véhicules autonomes, en dérivant des étiquettes de données elles-mêmes et en discutant de ses applications et de ses défis.
Couvre la classification des images, le clustering et les techniques d'apprentissage automatique telles que la réduction de la dimensionnalité et l'apprentissage par renforcement.
Explore les règles de voisinage les plus proches, les défis de l'algorithme k-NN, le classificateur Bayes et l'algorithme k-means pour le regroupement.
Couvre l'impact des transformateurs dans la vision par ordinateur, en discutant de leur architecture, de leurs applications et de leurs progrès dans diverses tâches.
Déplacez-vous dans l'énergie potentielle, la conservation de l'énergie, l'énergie et la force en mécanique, en mettant l'accent sur la conservation de l'énergie et la relation entre la force et l'énergie potentielle.
S'oriente vers l'approximation du réseau neuronal, l'apprentissage supervisé, les défis de l'apprentissage à haute dimension et la révolution expérimentale de l'apprentissage profond.