Primal-dual Optimization III: Méthodes de gradient lagrangien
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des opérateurs proximaux et des méthodes de gradient conditionnel pour les problèmes convexes composites de minimisation dans l'optimisation des données.
Explore les méthodes d'optimisation dans l'apprentissage automatique, en mettant l'accent sur les gradients, les coûts et les efforts informatiques pour une formation efficace des modèles.
Couvre les méthodes d'optimisation avancées en utilisant des multiplicateurs Lagrange pour trouver l'extrémité des fonctions soumises à des contraintes.
Introduit des opérateurs proximaux, des méthodes de gradient et une optimisation contrainte, explorant leur convergence et leurs applications pratiques.
Couvre les bases de la programmation non linéaire et ses applications dans le contrôle optimal, en explorant des techniques, des exemples, des définitions d'optimalité et les conditions nécessaires.
Explore les méthodes de pénalité quadratique pour les problèmes d'optimisation non convexe-concave et introduit des algorithmes primal-dual avec des fonctions de pénalité.