Discute des différences finies et des éléments finis, en se concentrant sur la formulation variationnelle et les méthodes numériques dans les applications d'ingénierie.
Couvre la solution générale des équations différentielles inhomogènes et explore la dépendance linéaire, les théorèmes dunicité et les équations de second ordre.
Couvre la solution générale des équations différentielles linéaires homogènes de second ordre avec des coefficients constants et le concept d'indépendance linéaire des solutions.
Couvre les bases des équations différentielles partielles, en mettant l'accent sur la modélisation du transfert de chaleur et les méthodes de solution numérique.
Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles, en se concentrant sur l'erreur de troncature locale, la stabilité et la continuité de Lipschitz.