Comprendre l'apprentissage automatique : des modèles parfaitement solubles
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les réseaux neuronaux convolutifs, l'augmentation des données, la dégradation du poids et le décrochage pour améliorer les performances du modèle.
S'insère dans l'automatisation de la synthèse chimique par la découverte et l'optimisation de catalyseurs à l'aide de l'apprentissage automatique et de la chimie computationnelle.
Explore l'optimisation de la formation contradictoire, la mise en œuvre pratique, l'interprétation, l'équité, la distance de Wasserstein et les GAN de Wasserstein.
Explore la connexion entre les réseaux neuronaux et la théorie quantique du champ, en se concentrant sur la correspondance entre les espaces de paramètres et de fonctions.
Couvre les fondamentaux des réseaux de neurones profonds et des splines, explorant leurs propriétés, leurs implications et leurs applications dans l'apprentissage automatique moderne.
Explore la modélisation basée sur les données de l'hémodynamique dans les flux vasculaires, en mettant l'accent sur les défis informatiques, la modélisation de l'ordre réduit, les problèmes de FSI et les applications de réseaux neuronaux.
Se penche sur les perspectives géométriques des modèles d'apprentissage profond, explorant leur vulnérabilité aux perturbations et l'importance de la robustesse et de l'interprétabilité.
Déplacez-vous dans la construction d'ensembles robustes grâce à l'augmentation de la marge pour améliorer la défense contradictoire dans les modèles d'apprentissage automatique.