Passer au contenu principal
Graph
Search
fr
|
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Séance de cours
Applications linéaires : matrices et transformations
Graph Chatbot
Séances de cours associées (25)
Précédent
Page 1 sur 3
Suivant
Transformation linéaire : matrices et applications
Couvre les transformations linéaires à l'aide de matrices, en se concentrant sur la linéarité, l'image et le noyau.
Opérations matricielles : Systèmes linéaires et solutions
Explore les opérations matricielles, les systèmes linéaires, les solutions et la portée des vecteurs en algèbre linéaire.
Polynômes caractéristiques et matrices similaires
Explore les polynômes caractéristiques, la similarité des matrices et les valeurs propres dans les transformations linéaires.
Équations linéaires : vecteurs et matrices
Couvre les équations linéaires, les vecteurs et les matrices, en explorant leurs concepts fondamentaux et leurs applications.
Combinaisons linéaires: vecteurs et matrices
Explore les combinaisons linéaires de vecteurs et de matrices dans Rn, en démontrant des interprétations géométriques et des opérations matricielles.
Valeurs propres et vecteurs propres en 3D
Explore les valeurs propres et les vecteurs propres dans l'algèbre linéaire 3D, couvrant les polynômes caractéristiques, la stabilité sous les transformations, et les racines réelles.
Indépendance linéaire et base
Explique l'indépendance linéaire, la base et le rang matriciel avec des exemples et des exercices.
Algèbre linéaire : matrices et espaces vectoriels
Couvre les noyaux matriciels, les images, les applications linéaires, l'indépendance et les bases dans les espaces vectoriels.
Décomposition de la valeur singulière : applications et interprétation
Explique la construction de U, la vérification des résultats et l'interprétation de SVD dans la décomposition matricielle.
Algèbre linéaire : sous-espaces et transformations
Explore les sous-espaces dans l'algèbre linéaire et les transformations, y compris les noyaux et les images des transformations linéaires.