Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.
Introduit des statistiques descriptives, une quantification de l'incertitude et des relations variables, soulignant l'importance de l'interprétation statistique et de l'analyse critique.
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Explique le test t à deux échantillons pour comparer les moyennes d'échantillons indépendants, y compris les étapes de test d'hypothèse et le calcul statistique de test.
Explore l'échantillonnage dans les statistiques inférentielles, en mettant l'accent sur l'impact de la taille de l'échantillon et du caractère aléatoire sur la précision de l'inférence.
Couvre les tests de ratio de vraisemblance, leur optimalité et les extensions dans les tests d'hypothèses, y compris le théorème de Wilks et la relation avec les intervalles de confiance.