Explore le traitement du signal graphique appliqué aux réseaux cérébraux, en mettant l'accent sur la relation entre la fonction cérébrale et la structure en utilisant des méthodes telles que le graphique Fourier Transform et l'indice de découplage structural.
Explore les signaux neuraux, les techniques d'imagerie cérébrale et l'organisation du cerveau, soulignant l'importance de comprendre les méthodes d'imagerie cérébrale et de mesurer les signaux du cerveau de façon non invasive.
Explore les progrès de l'IRMf de la moelle épinière à 7 Tesla, en soulignant son importance dans la compréhension des pathologies du système nerveux central.
Explore l'intégration de la structure et de la fonction cérébrales à l'aide des techniques de traitement des signaux graphiques, y compris l'IRM fonctionnelle et l'analyse du connectome structurel.
Explore les interactions d'ordre supérieur dans les réseaux cérébraux en utilisant des complexes simpliciaux et la théorie de l'information, en analysant les données de l'IRMf, des séries chronologiques financières et des maladies infectieuses.
Couvre l'analyse des fenêtres coulissantes, l'analyse des processus ponctuels et les modèles auto-régressifs dans la connectivité fonctionnelle dynamique.
S'oriente vers l'analyse de la dynamique cérébrale et des réseaux à l'aide de techniques de neuroimagerie avancées et de méthodes de traitement des signaux.