Présente la structure du cours et les concepts fondamentaux de l'apprentissage automatique, y compris l'apprentissage supervisé et la régression linéaire.
Introduit des concepts clés d'apprentissage automatique, tels que l'apprentissage supervisé, la régression par rapport à la classification et l'algorithme K-Nearest Neighbors.
Présente les bases du traitement de données textuelles, couvrant la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets.
Couvre les fondamentaux de l'apprentissage automatique pour les physiciens et les chimistes, en mettant l'accent sur les tâches de classification d'images à l'aide de l'intelligence artificielle.
Présente les bases de l'analyse de données textuelles, couvrant la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de techniques de prétraitement et de modèles d'apprentissage automatique.
Explore les algorithmes d'apprentissage automatique, les techniques de sélection des fonctionnalités telles que les descripteurs FAST et BRIEF, et les limites de l'apprentissage profond.