Explore le modèle Hodgkin-Huxley, les phases de potentiel d'action, la dynamique ionique, la théorie des câbles et la modélisation compartimentale dans l'excitabilité neuronale.
Se concentre sur l'assemblage des éléments constitutifs du réseau neuronal et sur la gestion de la rareté des données à l'aide de diverses stratégies et hypothèses.
Explore le regroupement dans les réseaux de neurosciences silico, la définition de l'espace et le traitement des données rares pour reconstruire les régions du cerveau.
Souligne la reproductibilité et la réutilisabilité des données dans les neurosciences silico, en mettant l'accent sur les outils et les méthodes de neuroinformatique.
Explore la classification des neurones, soulignant l'importance de comprendre la complexité du cerveau et les défis dans la définition des types de cellules.
Couvre l'activité spontanée du réseau cérébral, la simulation neuronale et la validation, soulignant l'importance des conditions in-vitro et in-vivo pour une modélisation précise du réseau.