Explore la découverte causale à l'aide de modèles variables latents, en mettant l'accent sur les défis et les solutions pour déduire les relations causales à partir de données non gaussiennes.
Explore l'intégration de l'apprentissage automatique dans des modèles à choix discrets, en soulignant l'importance des contraintes théoriques et des approches hybrides de modélisation.