Séance de cours

Analyse des choix discrets

Description

Cette séance de cours porte sur l'intégration des capacités d'apprentissage automatique dans les modèles à choix discrets, en mettant l'accent sur l'incorporation de variables latentes afin d'améliorer la flexibilité et l'interprétabilité des modèles. L'instructeur discute de la méthodologie consistant à combiner la modélisation structurelle et les approches fondées sur les données, en soulignant l'importance des contraintes théoriques dans l'estimation des modèles. Différents exemples et tendances de recherche dans le domaine de l'analyse de choix discrets sont explorés, mettant en évidence le passage à des modèles hybrides qui combinent l'apprentissage automatique et les techniques économétriques. Les propriétés statistiques, les essais d'hypothèses et les critères de sélection des modèles sont également discutés, ce qui donne un aperçu complet de l'évolution du paysage de la modélisation de choix.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.